Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Электрические вентили и выпрямительные устройства - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

Выпрямители

 Электростанции вырабатывают и передают потребителям переменный ток частотой 50 Гц. Однако для аппаратуры железнодорожной автоматики и телемеханики в основном требуется постоянный ток. Поэтому возникает необходимость преобразования переменного тока в постоянный. Для этого используют выпрямительные устройства (выпрямители), которые состоят из трансформатора Т, выпрямительной схемы В и фильтра Ф (рис. 218).
Трансформатор служит для преобразования стандартного переменного напряжения сети в переменное напряжение, при котором на выходе выпрямительного устройства получается постоянное напряжение, необходимое для питания аппаратуры автоматики и телемеханики.
Выпрямительная схема состоит из вентилей, пропускающих ток только в одном направлении. На выходе выпрямительной схемы выпрямленный ток изменяется по величине (пульсирует).

Рис. 218. Структурная схема выпрямительного устройства

В результате действия фильтра пульсация выпрямленного напряжения, подводимого к нагрузке, становится во много раз меньше.

Полупроводниковые вентили.

Для электропитания устройств железнодорожной автоматики и телемеханики применяют полупроводниковые вентили (селеновые, кремниевые). Вентиль представляет собой прибор, обладающий односторонней проводимостью. Току прямого направления вентиль оказывает малое сопротивление, а току обратного направления — очень большое сопротивление. Это основное электрическое свойство вентиля выражается его вольт-амперной характеристикой (рис. 219), т. е. зависимостью тока от напряжения, приложенного к вентилю.
При прямом напряжении Unp вентиль легко пропускает ток, который резко увеличивается с возрастанием прямого напряжения. Зависимость выражает прямая ветвь вольт-амперной характеристики. Обратная ветвь этой характеристики выражает зависимость обратного тока от приложенного обратного напряжения. Под действием обратного напряжения вентиль пропускает незначительный ток, увеличивающийся с возрастанием обратного напряжения. При обратном напряжении, называемом напряжением пробоя, происходит электрический пробой вентиля.
Максимальное обратное напряжение, которое вентиль может выдерживать без пробоя, сохраняя в допустимых пределах значение обратного тока, называется допустимым обратным напряжением. Для надежной работы вентиля допустимое обратное напряжение выбирают намного меньше напряжения пробоя.
Полупроводниковый вентиль представляет собой контактное соединение двух полупроводников с различными типами проводимости — электронной п и дырочной р (рис. 220, а). Вследствие большой концентрации электронов в полупроводнике п по сравнению с полупроводником р электроны будут проникать из полупроводника п в р. Аналогично будут проникать дырки в полупроводник п. В результате этого в тонком пограничном слое полупроводника п образуется объемный положительный заряд, а в пограничном слое полупроводника р — объемный отрицательный заряд.

Рис. 219. Вольт-амперная характеристика вентиля
Электрическое поле этих пространственных зарядов противодействует дальнейшей диффузии электронов и дырок через переход р — п. Таким образом, в слое р — п возникает потенциальный барьер.

Рис. 220. Принцип работы вентиля

Если положительный полюс источника питания соединить с полупроводником р, а отрицательный полюс — с полупроводником п (рис. 220, б), то электрическое поле источника ослабит действие пространственных зарядов и уменьшит потенциальный барьер, в результате чего возрастает диффузия, а следовательно, и ток через переход р — п. Такое соединение источника является прямым. При обратном соединении, когда положительный полюс источника соединен с полупроводником п, а отрицательный —с полупроводником р, внешнее электрическое поле источника усиливает поле пространственных зарядов и удаляет основные носители тока с обеих сторон перехода (рис. 220, в). В этом случае через переход проходит очень малый ток, создаваемый движением неосновных носителей. Таким образом, контактное соединение двух полупроводников с разными проводимостями обладает односторонней проводимостью, т. е. является вентилем.

Селеновые вентили (рис. 221).

На алюминиевую пластину 1 круглой, квадратной или прямоугольной формы нанесен тонкий слой селена 2, а поверх него — слой легкоплавкого сплава 3 из олова, кадмия и висмута. Между слоем селена, имеющего дырочную электропроводимость, и легкоплавким сплавом, обладающим электронной проводимостью, образуется вентильный р — n-переход.
Выпускаются селеновые элементы разных размеров на токи нагрузки от 60 мкА до 24 А на один элемент. Чем больше активная поверхность элемента, тем больший ток можно пропустить через него.
В зависимости от допустимого переменного напряжения селеновые элементы делят на шесть классов:

Селеновые вентили собирают в выпрямительные столбики. В столбике отдельные элементы соединяют в различные выпрямительные схемы. В системах автоматики и телемеханики используют однофазный и трехфазный выпрямительные мосты. После длительной работы прямое сопротивление селеновых вентилей повышается, это явление называется старением вентилей. В нормальных условиях работы выпрямителей срок их службы составляет примерно 5 лет. При нарушении нормальных режимов работы (перегрузка, превышение допустимой температуры и т.п.) срок службы выпрямителя сокращается.

Кремниевые вентили.

Силовые кремниевые вентили подразделяют на неуправляемые и управляемые (тиристоры). По конструкции они  напоминают германиевые вентили, но их изготавливают из других материалов. Основой кремниевого вентиля (рис. 222) является тонкая пластинка 2 чистого кремния, обладающая электронной проводимостью. Эту пластину сплавляют с пластиной алюминия 4. Вследствие диффузии атомов алюминия в кремнии создается тонкий слой 3, обладающий дырочной (р) проводимостью. Таким образом, внутри кремниевой пластины создается р — n-переход, обусловливающий выпрямляющее действие вентиля. Кремниевые вентили находятся в герметичном корпусе, что защищает их от влияния влажности окружающей среды. Один вывод кремниевого вентиля соединяется с алюминиевой пластиной, другой с токосъемным сплавом 1 серебра с сурьмой, нанесенным на другую сторону пластины кремния. Вентиль проводит ток в направлении от алюминия к кремнию. Выпрямительные кремниевые вентили имеют немного большее прямое сопротивление, чем германиевые, зато их обратное сопротивление примерно на порядок больше. Допустимое обратное напряжение кремниевых вентилей больше, чем германиевых, и достигает 600 В и более, рабочий ток, до1000 А рабочая температура от — 60 до +150 С. Большое допустимое обратное напряжение позволяет составлять выпрямительные схемы из кремниевых вентилей без их последовательного соединения. Кремниевые вентили имеют небольшие размеры и пропускают большие токи, поэтому они требуют интенсивного охлаждения. При небольших нагрузках их охлаждают с помощью радиаторов, а при больших нагрузках—потоком воздуха от специального вентилятора.

Рис. 223. Тиристор

Рис. 222. Пояснение к устройству кремниевого вентиля

Рис. 221. Селеновый вентиль

Тиристор (рис. 223) представляет собой кремниевую пластину с n-проводимостью, в которой создается четырехстопная полупроводниковая структура р — n — р — n, состоит из трех р — n-переходов, включаемых последовательно. Два крайних слоя р и n с припаянными к ним металлическими электродами являются анодом А и катодом К тиристора. К внутреннему слою с проводимостью р присоединяют управляющий электрод УЭ, через который проходит небольшой ток управления.
Тиристор может находиться в двух состояниях: в выключенном, или закрытом, которое
характеризуется большим сопротивлением, и во включенном, или открытом, которое характеризуется малым сопротивлением. Переход из закрытого состояния в открытое осуществляется с помощью подачи на анод большого положительного потенциала или подачи в цель управляющего электрода УЭ необходимою импульса напряжения. Переход тиристора из открытого состояния в закрытое осуществляется при отключении анодного напряжения или уменьшении прямого тока, проходящего через тиристор, до некоторого минимального значения, называемого удерживающим током.

Рис. 224. Вольт-амперная характеристика кремниевого стабилитрона

Кремниевые стабилитроны.

Плоскостные кремниевые диоды, предназначенные для стабилизации постоянного напряжения или для получения опорного (образцового неизменного) напряжения, называют кремниевыми стабилитронами или опорными диодами.
Для стабилизации напряжения обычно используют участок АВ вольт-амперной характеристики кремниевого стабилитрона (рис. 224), когда к нему подключают обратное напряжение. При напряжении Uа начинается электрический пробой р — n-перехода. Напряжению Uа соответствует минимальный ток стабилизации Imin. Обратному напряжению Uв соответствует максимальный ток стабилизации Iтах и наибольшая допустимая мощность в стабилитроне Рmах = UвImах. При напряжениях, больших Ur, мощность, выделяемая в стабилитроне, превышает установленный предел. В результате электрический пробой переходит в тепловой и наступает необратимое разрушение р — n-перехода.
Таким образом, в области электрического пробоя (на участке АВ вольт-амперной характеристики) кремниевые стабилитроны не перегреваются выше допустимой температуры и не выходят из строя. Причем напряжение пробоя остается почти постоянным при условии, когда обратный ток меняется в очень широких пределах. Это свойство кремниевых диодов и используют для стабилизации напряжения. Стабилизатор напряжения (рис. 225, а) состоит из кремниевого стабилитрона V и резистора R0, включенных последовательно. Сопротивление нагрузки RH включают параллельно стабилитрону.
При напряжении Uвx min начинается электрический пробой р — n- перехода стабилитрона V и на выходе стабилизатора устанавливается напряжение Uвыхmin. При увеличении входного напряжения увеличивается ток кремниевого стабилитрона, а выходное напряжение меняется незначительно.


Рис. 225. Стабилизатор напряжения с кремниевым стабилитроном:
а — схема; б — характеристики

Сопротивление резистора R0 выбирается таким, чтобы при напряжении ток кремниевого стабилитрона не превышал заданный предел, за которым происходит пробой и стабилитрон выходит из строя.
Пределы стабилизации напряжения в кремниевом стабилитроне ограничены минимальным и максимальным токами стабилизации. Напряжение стабилизации кремниевых стабилитронов зависит от их типа и может быть равно от 3,7 до 100 В. Если необходимо стабилизировать более высокое напряжение, то включают несколько стабилитронов последовательно. Параллельное включение стабилитронов не применяется, так как невозможно подобрать стабилитроны с совершенно одинаковыми вольт-амперными характеристиками и при параллельном включении работает только один стабилитрон, у которого электрический пробой наступает раньше. Вольт-амперная характеристика кремниевого диода имеет резкий излом при прямом напряжении 1—1,5 В, поэтому кремниевые диоды можно использовать для стабилизации малых напряжений. В этом случае их включают в прямом направлении.
Кремниевые стабилитроны используют в выпрямителях диспетчерской, горочной и электрической централизации для получения опорного (определенного неизменного) напряжения.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги