Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Автотрансформаторы и дроссели насыщения - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

Автотрансформаторы.

В отличие от обычного трансформатора автотрансформатор вместо двух электрически изолированных обмоток имеет одну, разделенную на две части.
В понижающем автотрансформаторе (рис. 172) к первичной обмотке с числом витков wАВ = W1 подводится напряжение Ul. Вторичной обмоткой является часть первичной с числом витков w2 = wБA.
В автотрансформаторе происходят те же процессы, что и в трансформаторе. Под действием синусоидального напряжения U1 в первичной обмотке возникает переменный ток. Намагничивающая сила этого тока возбуждает в сердечнике переменный магнитный поток, который наводит в обмотках э. д. с. E1- Е2. Напряжение вторичной обмотки U2 пропорционально числу витков w2. В понижающем автотрансформаторе w2 <w1, поэтому напряжение U2<U1, а ток I2 >I1.

Рис. 172. Схема автотрансформатора

Рис. 171. Схемы для определения потерь в стали (а) и меди (б)
В обмотках нагруженного автотрансформатора по виткам w2 протекают два тока: первичный I1 и вторичный I2. Как и в обычном трансформаторе, эти токи сдвинуты на угол, равный 180°.  Поэтому совмещенную часть обмотки, т. е. витки wБA выполняют проводом меньшего сечения. Благодаря этому автотрансформатор имеет меньшие габаритные размеры, массу и стоимость, чем трансформатор с теми же номинальными данными.
Эти преимущества автотрансформатора возрастают с уменьшением разности I2 — I1, т. е. по мере приближения коэффициента трансформации к единице.
Автотрансформаторы применяют в том случае, если требуется изменять напряжение в небольших пределах. Недостаток автотрансформаторов — электрическая связь обмоток высшего и низшего напряжений, что не позволяет использовать автотрансформаторы для преобразования высокого напряжения в низкое (например, 6000 В в 220 В). Наличие электрической связи обмоток в этом случае опасно для жизни людей, работающих с автотрансформатором.

Дроссели насыщения.

Для автоматической регулировки напряжения в выпрямителях, предназначенных для электропитания диспетчерской, горочной и электрической централизации, используют дроссели насыщения (ДН), которые представляют собой Ш-образный сердечник с двумя обмотками (рис. 173, а). На крайних стержнях находится обмотка переменного тока w, состоящая из двух равных частей, соединенных последовательно, а на среднем стержне - обмотка подмагничивания (управляющая), подключаемая к источнику постоянного тока.
Обе части обмотки переменного тока соединяют таким образом, чтобы их переменные магнитные потоки Ф, замыкаясь по среднему стержню, были направлены навстречу друг другу. Благодаря этому они взаимно компенсируются и в обмотке подмагничивания не возникает переменная э. д. с.
Магнитный поток обмотки подмагничивания Ф разветвляется на две равные части и замыкается по крайним стержням. Следовательно, результирующий магнитный поток в крайних стержнях сердечника дросселя имеет две составляющие: постоянную, которая создается током обмотки подмагничивания, и переменную, которая создается переменным током.

Рис. 173. Схема дросселя насыщения (а) и конструкция (б) и схема включения трехфазного дросселя насыщения
Намагничивающую силу /         выбирают так, чтобы при отсутствии
тока подмагничивания крайние стержни дросселя находились в режиме насыщения. Поэтому при увеличении тока подмагничивания а следовательно, и потока Ф снижается переменный магнитный погон в сердечнике дросселя.
Трехфазный дроссель насыщения (рис. 173, б и в) состоит из шести замкнутых сердечников с обмотками. Обмотки переменного тока 1 и 2 включают в первую фазу, 3 и 4 — во вторую фазу, 5 и 6 — в третью фазу. Обмотка подмагничивания охватывает стержни всех сердечников и является общей для всех трех фаз цепи.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги