Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

ЗАЩИТА ВОЗДУШНЫХ И КАБЕЛЬНЫХ ЛИНИЙ АВТОМАТИКИ, ТЕЛЕМЕХАНИКИ И СВЯЗИ § 26. Влияние электрических железных дорог и линий электропередачи на воздушные и кабельные линии
Воздушные и кабельные линии, имеющие сближение с высоковольтными линиями электропередачи и тяговыми сетями железных дорог, подвержены индуктивному и гальваническому влиянию этих линий и сетей.
Индуктивное влияние обусловлено переменными электрическими и магнитными полями, создаваемыми в окружающем пространстве переменными напряжениями и токами во влияющих линиях, и поэтому индуктивное влияние принято также называть электромагнитным влиянием.
Электрическому влиянию, обусловленному наличием во влияющей линии переменного электрического напряжения, подвержены цепи воздушных линий автоматики, телемеханики и связи. Кабельные линии, проложенные в земле, не подвержены электрическому влиянию, так как силовые линии электрических полей экранируются поверхностью земли. Магнитному влиянию, обусловленному протекающим по влияющим проводам переменным током, подвержены воздушные и кабельные линии.
По характеру воздействия электромагнитного влияния на цепи автоматики, телемеханики и связи, а также на устройства, включенные в эти цепи, влияния разделяют на опасные и мешающие.
Опасным называют влияние, при котором напряжение и токи, возникающие в цепях автоматики, телемеханики и связи, могут создать опасность для здоровья и жизни обслуживающего персонала, вызвать повреждения приборов и аппаратуры, включенных в эти цепи.
Мешающее влияние наблюдается тогда, когда в каналах возникают помехи, нарушающие нормальное действие этих устройств (заметные шумы в телефонных цепях, искажение в передаче телемеханических сигналов и т. п.).

Для того чтобы оценить величины опасных и мешающих влияний и сравнить их с установленными нормативными значениями при проектировании строительства линии передачи в зоне влияния ЛЭП или электрических железных дорог или проектировании ЛЭП и электрификации железной дороги, проводят электрические расчеты опасных и мешающих влияний.


Рис. 97. Схема сближения влияющего провода и провода, подверженного влиянию

Если величины опасных и мешающих влияний, полученные при расчете, выше установленных нормативных значений, то проводят на линиях сильного тока и на линиях передачи защитные мероприятия, обеспечивающие снижение влияния до допустимых пределов.

Тяговые сети железных дорог, у которых прямым проводом является контактная сеть, а обратным — «рельс — земля», создают также гальваническое влияние. Гальваническому влиянию подвержены цепи автоматики, телемеханики и связи, использующие землю в качестве обратного провода.

Магнитное влияние.

Из электротехники известно, что если по какому-либо проводнику протекает переменный ток с частотой f, то вокруг этого проводника возникает переменное магнитное поле той же частоты. Если в этом поле поместить другой проводник А, то магнитные силовые линии будут пересекать этот проводник и в нем по закону индукции возникает переменная э. д. с., которая будет отставать от тока во влияющем проводнике на 90°.
Предположим, что влияющим проводом является контактный провод 1 (рис. 97) железной дороги, по которому протекает переменный ток I с частотой f. Параллельно контактному проводу подвешен провод диспетчерской централизации А, являющийся проводом, подверженным влиянию. Примем, что длина сближения проводов I и А равна I, а взаимная индуктивность между этими проводами, отнесенная к 1 км параллельного сближения проводов, — М. Тогда продольная э. д. с. Ем, индуцированная в проводе связи, подверженном влиянию, по отношению к земле
Ем - ɷМН,
где ɷ -2пf — круговая частота влияющего тока;
М — взаимная индуктивность между проводами I и А, Гн/км;
I — влияющий ток, протекающий по проводу 1, А,
L — длина параллельного сближения проводов 1 и А, км.

Взаимная индуктивность М между двумя однопроводными цепями, обратным проводом у которых является земля, зависит от расстояния а между этими цепями, называемого шириной сближения, и удельной проводимости земли о, которую определяют для района сближения проводов по заранее составленным картам проводимости земли или с помощью электрических измерений.

Формулы для вычисления взаимной индуктивности сложные, и поэтому для облегчения расчетов пользуются номограммами и графиками, позволяющими по известной ширине сближения, удельной проводимости земли и частоте влияющего тока легко определять значения М.
Опасное магнитное влияние линий сильного тока обычно рассчитывают на основной частоте влияющего тока, равной 50 Гц. Для этой частоты приведена номограмма (рис. 98), по которой можно определить взаимную индуктивность между двумя однопроводными цепями для ширины сближения между ними от 1 до 5000 м при проводимости земли от 0,1 · 10~3 до 400 · 10~3 См/м.
Пример. Определить продольную э. д. с. Еы в проводе связи на воздушной линии, проходящей параллельно контактному проводу железной дороги, электрифицированной на переменном токе, на расстоянии, равном 50 м. Ток I частотой 50 Гц в контактном проводе равен 600 А, длина сближения 10 км, проводимость земли σ = 25· 10_3 См/м.
Определим взаимную индуктивность между контактным проводом и проводом связи. Для этого на шкале номограммы (см. рис. 98) отметим точку, равную 50 м (ширина сближения), а на шкале проводимости земли —точку, соответствующую проводимости земли σ = 25-10~3 См/м. Соединив эти точки прямой линией, на средней шкале получим значение взаимной индуктивности М, равное 525 мкГн/км, или 525- Ι0-6 Гн/км.
Продольная э.д.с. в проводе связи Ем = ɷМН — 2л 50-525-1(10-6-600 х10 = 990 В.
В действительности продольная э. д. с. Ем будет примерно в 2 раза меньше за счет экранирующего действия рельсов электрифицированной железной дороги.
Распределение продольной э. д. с. в проводе, подверженном влиянию, зависит от его состояния. Так, если провод АБ изолирован на обоих концах от земли, то продольная э. д. с. в этом проводе распределится таким образом, как это показано на рис. 99, а.
При заземлении одного из концов провода, например конца провода Б (рис. 99, б), напряжение этой точки провода по отношению к земле будет равно нулю, а напряжение U„ на изолированном от земли конце провода А станет примерно равным продольной э. д. с. Ем, индуцированной в проводе. Расчет индуцированной продольной э. д. с. Ем и оценку ее опасного воздействия принято проводить для случая заземления одного из концов провода, подверженного влиянию.

Экранирующее действие рельсов и металлической кабельной оболочки. Переменный ток, протекающий по контактной сети, индуцирует продольную э. д. с. Ем во всех расположенных вблизи проводниках, в том числе и в ходовых рельсах. Продольную э. д. с. в рельсах можно определить, зная ток в контактной сети и взаимную индуктивность между контактной сетью и рельсами. Так как переходное сопротивление между рельсами и землей сравнительно невелико и обычно не превышает нескольких омов на километр, то под воздействием э. д.с., индуцированной в рельсах, возникает ток , протекающий по цепи рельсы — земля».


Рис. 98. Номограмма для определения взаимной индуктивности между однопроводными цепями при частоте 50 Гц
Ток Iр, индуцированный в рельсах, примерно равен половине тока I. в контактном проводе: Iр -- 0,5Iк, направление тока в рельсах по отношению к току в контактном проводе сдвинуто на угол, близкий к 180°. Следовательно, на подверженный влиянию провод В, находящийся вблизи от электрической железной дороги, будут воздействовать два тока (рис. 100), протекающие по контактному проводу и рельсам. Так как эти токи протекают в противоположном направлении (угол сдвига между ними близок к 180°), то они в каждый момент времени будут создавать в проводе, подверженном влиянию, две э. д. с., также сдвинутые по отношению друг к другу примерно на 180°. Следовательно, результирующая э. д. с. в проводе будет равна разности э. д. с., индуцированных токами Iк и Iр, так как она будет иметь меньшее значение по сравнению с э. д. с., индуцированной током, протекающим по контактному проводу. В этом и заключается экранирующее действие рельсов.
Результирующая э. д. с. Ерез в проводе, подверженном влиянию, будет равна разности продольных э. д. с. Ек и Ер, а коэффициент экранирующего действия рельсов определится как отношение результирующей э. д. с. к э. д. с. индуцированной током, протекающим по контактному проводу:

На практике коэффициент экранирующего действия рельсов принимают SР = 0,5. В действительности этот коэффициент в некоторой степени зависит от проводимости земли и числа путей электрифицированной железной дороги. На однопутных и двухпутных участках SР 0,45-0,55, а на многопутных Sp — 0,3-0,45.


Рис. 99. Распределение продольной э. д. с. в изолированном и заземленном проводах, подверженных влиянию

Рис. 100. Взаимное расположение контактного провода, провода подверженного влиянию, и рельсов
Физическая сущность экранирующего действия металлической оболочки кабеля сходна с физической сущностью экранирующего действия рельсов. Ток протекающий по контактному проводу, будет индуцировать в жилах кабеля и в его металлической оболочке продольные э. д. с. Еж и Еоб одинакового значения. Это обусловлено тем, что взаимные индуктивности между контактным проводом и жилами кабеля и между контактным проводом и оболочкой будут равны, так как расстояние между контактным проводом и кабелем практически не бывает меньше 5—10м, а расстояние между жилами кабеля и его оболочкой не превышает нескольких миллиметров. Коэффициент защитного действия оболочки кабеля будет тем лучше, чем меньше ее активное сопротивление и чем больше ее индуктивность.

Рис. 101. Схема, поясняющая, электрическое влияние;
а — расстояние между проводами; b — высота подвески влияющего провода; с — высота подвески провода, подверженного влиянию



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги