Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Защита кабелей от межкристаллитной коррозии - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

Такую защиту предусматривают только для кабелей со свинцовой оболочкой. Если кабель предназначен для прокладки на участках, подверженных сильной вибрации (например, на железнодорожных и автодорожных мостах), то для повышения стойкости свинцовой оболочки к межкристаллитной коррозии и вибронагрузкам при изготовлении кабельной оболочки в свинец добавляют присадки других металлов (сурьму и др.). Кабель прокладывают по мосту целым куском, так как в местах установки соединительных муфт межкристаллитная коррозия проявляется сильнее. Для снижения вибрации кабеля его прокладывают в коробах, наполненных песком, делают амортизационные прокладки из резины и т. п.
Защита кабелей от коррозии любыми из перечисленных выше методов дает эффект лишь в том случае, если во время эксплуатации кабеля проводят систематические наблюдения за распределением потенциалов в металлических оболочках и за работой дренажных, катодных и других установок.

Контрольно-измерительные пункты.

Для наблюдения за распределением потенциалов в кабельной оболочке устраивают контрольноизмерительные пункты. Если кабели проложены вдоль железных дорог, электрифицированных на постоянном токе, и ширина сближения не превышает 100 м, то контрольные пункты на кабелях со свинцовой оболочкой и броней с изолирующим покрытием из кабельной пряжи оборудуют через 2500-500 м. На участках железных дорог с электрической тягой переменного тока и на неэлектрифицированных участках в зависимости от агрессивности грунта контрольные пункты оборудуют на этих кабелях через 600 2200 м. На кабелях, имеющих поверх металлической оболочки защитный пластмассовый шланг, контрольные пункты оборудуют реже.
Контрольно-измерительные пункты представляют собой железобетонные столбики с внутренней продольной стальной трубой для вывода проводов от металлических покровов подземного кабеля. В верхней части столбика размещен щиток с двумя зажимами для подключения проводов. Обычно изолированные проводники припаивают к оболочке и броне кабеля в двух точках, отстоящих друг от друга на расстоянии 1000 мм.
На рис. 135, а показан способ измерения потенциала на оболочке и броне кабеля с помощью вспомогательного заземлителя. Иногда заземлитель зарывают рядом с кабелем постоянно и тогда на контрольно-измерительный пункт выводят третий провод от заземления. Для измерения потенциалов используют вольтметры с внутренним сопротивлением не менее 20 кОм на 1 В шкалы и с пределами измерений 1—0—1, 10—0—10 , 20—0-20 и 50—0—50 В.
Наличие вывода двух проводов от оболочки кабеля позволяет, пользуясь методом падения напряжения и зная сопротивление металлических покровов кабеля длиной 1 м, измерять не только потенциал  оболочки по отношению к земле, но и блуждающий ток, протекающий по оболочке, используя для этого милливольтметр (рис. 135, б).

Рис. 136. Потенциальная диаграмма

Рис. 135. Контрольный пункт для измерения потенциала оболочки по отношению к земле и тока к оболочке
Потенциальные диаграммы. Для оценки коррозионного воздействия блуждающих токов на металлические покровы кабеля строят потенциальные диаграммы (рис. 136). Для этого в каждом контрольно-измерительном пункте измеряют потенциал оболочки кабеля по отношению к земле.

В зонах наличия блуждающих токов электрических железных дорог измерения обычно проводят в течение 10—15 мин через каждые 10 с. При этом необходимо, чтобы за период измерений мимо контрольного пункта прошло не менее чем по два поезда в разных направлениях. После окончания измерений вычисляют среднее значение положительных и отрицательных потенциалов для каждого измерительного пункта и по этим значениям строят потенциальную диаграмму.
На диаграмме цифрами отмечены номера контрольно-измерительных пунктов, расположенных на трассе кабеля. Вверх по оси ординат отложены положительные потенциалы, измеренные на оболочке кабеля, а вниз — отрицательные. Как видно из диаграммы, участок оболочки кабеля между пунктами 1—2 имеет отрицательный потенциал (катодная зона), участок между пунктами 6—8 — положительный (анодная зона), а остальные участки — знакопеременный потенциал.
Такая потенциальная диаграмма позволяет судить об опасности коррозии и наметить меры защиты.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги