Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Типы генераторов постоянного тока - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

§ 34. Типы генераторов и их характеристики
Для создания в генераторах магнитного поля служат электромагниты, которые возбуждаются током постороннего источника или током той же машины. В первом случае машину называют генератором с независимым возбуждением, а во втором — с самовозбуждением.
В зависимости от способа включения обмотки возбуждения генераторы с самовозбуждением делят на генераторы параллельного и смешанного возбуждения.
Генератор независимого возбуждения (рис. 149). Обмотка возбуждения ОВ, регулировочный реостат R и амперметр РА подключают к аккумуляторной батарее GB или другому внешнему источнику постоянного тока. К обмотке якоря Я подсоединены приемник энергии г, а также амперметр РА1 и вольтметр PV, контролирующие ток и напряжение в цепи.

Рис 149. Схема генератора независимого возбуждения
Перед пуском генератора отключают приемники электроэнергии и полностью включают сопротивление регулировочного реостата R. Включив первичный двигатель, устанавливают номинальную частоту его вращения и медленно уменьшают сопротивление регулировочного реостата R до тех пор, пока вольтметр PV не покажет номинального напряжения. После этого постепенно включают нагрузку, одновременно уменьшая сопротивление регулировочного реостата R, чтобы сохранить номинальное напряжение, так как по мере загрузки генератора оно несколько уменьшается Во время работы генератора следует следить за тем, чтобы ток нагрузки не превышал номинального значения. Генератор выключают в последовательности, обратной его запуску.
При эксплуатации необходимо знать основные характеристики генератора.

Рис. 150. Характеристики генератора независимого возбуждения
Характеристика холостого хода (рис. 150, а) выражает зависимость э. д. с. генератора Е от тока в обмотке возбуждения при постоянной частоте вращения генератора и выключенной нагрузке, т. е. Е f  при п const.
При разомкнутой цепи возбуждения в обмотке якоря индуцируется небольшая э. д. с. Еост порядка 10—15 В, обусловленная остаточным магнетизмом сердечников полюсов машины. С возрастанием тока возбуждения будут увеличиваться магнитное поле и э. д. с. генератора, пока не произойдет насыщения сердечников полюсов машины. При уменьшении тока возбуждения магнитное поле и э. д.с. генератора будут уменьшаться по кривой, лежащей несколько выше восходящей, за счет гистерезиса. Таким образом, характеристика холостого хода зависит от магнитных качеств машины. Обычно точка А, соответствующая номинальной э. д. с. Ен находится на перегибе кривой. Если бы она была на прямолинейном участке характеристики, напряжение генератора сильно изменялось бы с изменением нагрузки, а работа в области насыщения полюсов, где э. д. с мало зависит от тока возбуждения, ограничивала бы возможность регулирования напряжения.
Внешняя характеристика (рис. 150, б) выражает зависимость напряжения генератора U от тока нагрузки при постоянной частоте вращения якоря и неизменном сопротивлении цепи возбуждения, т. е. U (1) при п const и rH const. Для снятия внешней характеристики следует установить номинальную частоту вращения первичного двигателя и номинальное напряжение при номинальном токе в цени якоря. После этого уменьшают ток нагрузки до нуля, оставляя постоянными частоту вращения и сопротивление цени возбуждения. По внешней характеристике определяют напряжение генератора при различных нагрузках.
Регулировочную характеристику const и U  const (рис. 150, в) снимают так же, как и внешнюю, но при этом напряжение генератора поддерживают постоянным. Для этого следует уменьшать ток возбуждения  при уменьшении нагрузки и увеличивать его с увеличением последней. Регулировочная характеристика показывает, каким должен быть ток возбуждения при различных нагрузках генератора, чтобы его напряжение осталось неизменным.

Генератор параллельного возбуждения (рис. 151).

Схема генератора параллельного возбуждения отличается от схемы генератора независимого возбуждения тем, что цепь возбуждения подключена не к батарее аккумуляторов, а к зажимам якоря. В обмотку возбуждения ОВ, имеющую значительное сопротивление, ответвляется небольшая часть общего тока (1—3% номинального значения). При пуске генератора без нагрузки витки обмотки якоря сначала пересекают силовые линии остаточного магнитного поля полюсов машины. Вследствие этого в обмотке якоря возбуждается небольшая э. д. с. (10—15 В), образующая слабый ток в обмотке возбуждения. Этот ток усиливает магнитное поле полюсов, т. е. число пересекаемых силовых линий. Таким образом, до определенного значения увеличивается сначала э. д. с. машины, а затем и ток возбуждения.
Самовозбуждение машины может происходить в случае, если магнитный поток, созданный током возбуждения, совпадает с потоком остаточного магнетизма. Если генератор не самовозбуждается, следует остановить первичный двигатель и, переключив выводы обмотки возбуждения генератора, изменить направление тока возбуждения. При потере остаточного магнетизма обмотку возбуждения следует кратковременно подключить к постороннему источнику постоянного тока.

Рис. 151. Схема генератора параллельного возбуждения

Рис. 152. Внешние характеристики генератора параллельного 1 и независимого 2 возбуждения
Характеристики генератора параллельного возбуждения снимают так же, как и генератора независимого возбуждения (рис. 152). С увеличением тока нагрузки I напряжение U генератора параллельного возбуждения снижается больше, чем генератора независимого возбуждения.

Рис. 153. Схема генератора смешанного возбуждения (а) и его внешняя
характеристика (б)
Это объясняется тем, что ток возбуждения генератора параллельного возбуждения  уменьшается при увеличении нагрузки пропорционально напряжению U, тогда как у генератора независимого возбуждения const.
Если увеличивать нагрузку на генератор независимого возбуждения, то его ток будет непрерывно расти и при коротком замыкании  достигнет очень большого значения.
В генераторе параллельного возбуждения ток нагрузки  будет увеличиваться только до критического значения. Когда машина выйдет из режима магнитного насыщения, ее напряжение U будет снижаться быстрее, чем сопротивление нагрузки  и ток  начнет уменьшаться.
При коротком замыкании напряжение U и ток возбуждения U/rв будут равны нулю. Поэтому в обмотке якоря наведется незначительная э. д. с. Генераторы параллельного возбуждения получили широкое распространение, так как они не требуют специального источника постоянного тока для питания обмотки возбуждения.

Генератор смешанного возбуждения (рис. 153, а).

Для правильной работы генератора токи в главной параллельной ОВШ и дополнительной последовательной ОВС обмотках возбуждения должны иметь одинаковое направление. Чтобы снизить потерю напряжения в последовательной обмотке возбуждения, ее изготовляют из небольшого числа витков провода с большим поперечным сечением. В отличие от других генераторов постоянного тока напряжение генератора смешанного возбуждения при изменении тока нагрузки от нуля до номинального значения остается почти без изменения (рис. 153, б). Это объясняется тем, что с увеличением нагрузки увеличиваются ток якоря, магнитный поток последовательной обмотки возбуждения и э. д. с. генератора Е=СФп. В результате автоматически будет скомпенсировано влияние внутреннего падения напряжения на значение внешнего напряжения генератора.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги