Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Электрическое и гальваническое влияние электрических железных дорог - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

Электрическое влияние.

Рассмотрим систему из двух параллельно идущих проводников (рис. 101) — влияющего провода 1, находящегося по отношению к земле под переменным напряжением U, и подверженного влиянию провода А, изолированного от земли. Переменное напряжение создает вокруг провода 1 переменное электрическое поле, силовые линии которого будут пересекать провод А.
По закону электрической индукции в проводе А по отношению к земле будет индуцироваться опасный потенциал

где U — линейное напряжение во влияющем проводе. В;
С1А - электрическая емкость между проводами 1 и А, Ф/км;
СА0 — то же между проводом А и землей, Ф/км.
Если за провод, находящийся под потенциалом условно примем человека, стоящего на земле, то через тело человека пройдет ток

где ω 2nf — круговая частота влияющего тока;
I—длина провода, подверженного влиянию, км.
Анализируя кривые зависимости потенциала в изолированном от земли проводе, подверженном влиянию (рис. 102), от ширины сближения его с однопутной 1 и двухпутной 2 железной дорогой, электрифицированной на переменном токе с напряжением в контактном проводе 27,5 кВ, получаем, что потенциал в проводе, подверженном влиянию, при небольшой ширине сближения может достигать больших значений, но резко уменьшается с увеличением ширины сближения. Исходя из установленных норм с опасным электрическим влиянием обычно можно не считаться, если на однопутных железных дорогах ширина сближения больше 90 м, а на двухпутных — больше 120 м.

Гальваническое влияние.

Однопроводные цепи, использующие землю в качестве обратного провода, испытывают гальваническое влияние, которое обусловлено токами, возникающими в земле от различных источников. Одним из источников этих токов являются железные дороги постоянного и переменного тока, у которых обратный ток возвращается частично по рельсам и частично по земле. Блуждающие токи, протекающие в земле, создают в различных точках земли разные потенциалы. Если рабочие заземления однопроводных цепей находятся в зоне блуждающих токов, то под действием разности потенциалов в этих цепях возникнут токи гальванического влияния.
Напряжение опасного гальванического влияния в однопроводной цепи (рис. 103), рабочие заземления которой 1 и 2 расположены в зоне блуждающих токов железной дороги,
Ur=Ur1 — Ur2,
где U1— потенциал земли в точке 1 с координатами х1, у1 относительно заземления тяговой подстанции ТП, В;
U2 — то же в точке 2 с координатами х2, у2, В.
Вычисление потенциалов Ur1 и Ur2 процесс очень трудоемкий и на практике для этого пользуются диаграммами, составленными по расчетным формулам для нагрузочного тока, равного 1000 А, для различных координат х и у с учетом проводимости земли.
Диаграмма (рис. 104) построена для нагрузочного тока 1000 А и проводимости земли 1 · 10_3 См'м.
Пример. Определить разность потенциалов U в однопроводной цепи, одно из заземлений которой имеет координаты по отношению к заземлению тяговой подстанции х, = 250 м и y1 —- 10 м, а другое — координаты х2 — 2500 м и у2 - 500 м. По кривым (см. рис. 104) находим потенциал земли с координатами х1-
250 м и уг — 10 м: Un = 130 В; потенциал земли в точке с координатами х2 -
2500 м и у2 = 500 м UΓ2 — 38 В. Следовательно, Ur - (UГ1 — Ur2 — 130 — -38= 92 В.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги