Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Однофазный трансформатор - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

Однофазный трансформатор представляет собой электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты. Трансформатор может быть однофазным или трехфазным.
Простейший однофазный трансформатор состоит из замкнутого стального сердечника 1 (рис. 162) и двух магнитосвязанных обмоток 2 и 3.
Обмотку 2, соединенную с источником электроэнергии, называют первичной. Все величины, относящиеся к этой обмотке, называют первичными и обозначают соответствующими буквами с индексом 1. Обмотка 3, соединенная с потребителем энергии Z, является вторичной. Все величины, относящиеся к этой обмотке, обозначают с индексом 2. Под действием переменного напряжения U1 в первичной обмотке с числом витков w1 возникает ток. Намагничивающая сила I1w1 первичного тока возбуждает в сердечнике трансформатора переменный магнитный поток Ф = Фт sin ωt. Этим потоком в первичной обмотке наводится э. д. с. самоиндукции - 4,44fw1Фт, а во вторичной обмотке — э. д. с. взаимоиндукции E2 = 4,44 fw2Фт. Поэтому на зажимах вторичной обмотки возникает переменное напряжение U2, а приемник энергии получает ток I2 = U2iZ2. Таким образом, со стороны вторичной обмотки трансформатор является источником электрической энергии, а со стороны первичной обмотки— потребителем этой энергии. Отношение действующих значений э. д. с., равное отношению чисел витков обмоток, называют коэффициентом трансформации: К = E1|Ε2 = 4,44fw1Фт/(4,44/fw2Фт)= w1/w2.
В трансформаторах, понижающих напряжение, w2 < w1, а коэффициент трансформации К > 1.
Обмотку трансформатора, рассчитанную на большее напряжение, называют обмоткой высшего напряжения (ВН). Обмотку, на зажимах которой действует меньшее напряжение, называют обмоткой низшего напряжения (НН).
схема однофазного трансформатора
Рис. 162. Принципиальная схема однофазного трансформатора
Электрическая энергия в трансформаторе преобразуется с незначительными потерями, и подводимая к трансформатору полная мощность S1 = U1I1 почти равна отдаваемой мощности S2 = U2I2. Поэтому при увеличении напряжения U2 соответственно снижается и ток I2. Таким образом, обмотка низшего напряжения должна иметь меньшее число витков с большим поперечным сечением соответственно большей величине проходящего по ней тока, а обмотка высшего напряжения — большее число витков с меньшим поперечным сечением.
В ряде случаев обмотки трансформатора имеют несколько ответвлений (рис. 163). Это позволяет включать трансформатор в сеть с различным напряжением U1, а на приемнике получать различные напряжения U2 в зависимости от числа витков, включенных в работу. Такие трансформаторы используют, например, в электрической централизации для питания ламп светофоров, маршрутных указателей, пульта-табло в различных режимах (дневном и ночном).

Рис. 163. Расположение ответвлений на обмотках трансформатора
Трансформатор состоит из сердечника, по которому замыкается магнитный поток, обмоток высшего и низшего напряжения, бака с маслом (если трансформатор имеет масляное охлаждение), выводных изоляторов.
Для уменьшения нагрева от вихревых токов сердечник трансформатора набирают из штампованных пластин электротехнической стали толщиной 0,35 или 0,5 мм, покрытых пленкой лака или окиси. Применение электротехнической стали с большой магнитной проводимостью способствует увеличению магнитного потока и усилению электромагнитной связи между обмотками.
По конструкции сердечника трансформаторы делят на стержневые, броневые, тороидальные и ленточные разрезные.
Сердечник однофазного стержневого трансформатора (рис. 164, о) имеет два стержня 5, на которых размещаются обмотки, и два ярма 1, замыкающих магнитную цепь. Такие сердечники собирают из Г-образных пластин. Обмотки стержневого трансформатора размещают на двух стержнях магнитопровода. Обе половины одной и той же обмотки соединяют так, чтобы их намагничивающие силы складывались.

Рис. 164. Сердечники и обмотки стержневого (а) и броневого (б) трансформаторов
На стержни сердечника надевают изоляционные гильзы. Ближе к стальному стержню размещают обмотку низшего напряжения 2, так как ее легче изолировать от стержня 5. Обмотку высшего напряжения 4 отделяют от обмотки низшего напряжения изоляцией 3. В качестве изоляции применяют электротехнический картон, специальную бумагу или ткань, пропитанную лаком.
Тороидальный трансформатор
Рис. 165. Тороидальный трансформатор (а) и трансформатор с ленточным разрезным сердечником (б)
Сердечники броневых трансформаторов (рис. 164, б) собирают из штампованных пластин Ш-образной формы, и они имеют три стержня. Обмотки низшего 2 и высшего 4 напряжения размещают на стержне 5. Между обмотками находится изоляция 3. Обмотки трансформатора размещают на среднем стержне 5. Магнитный поток из среднего стержня разветвляется на крайние стержни через ярмо 1. По сравнению со стержневыми в броневых трансформаторах больше коэффициент электромагнитной связи между обмотками, меньше рассеивание магнитного потока в окружающую среду. Благодаря этому броневые трансформаторы имеют лучшие электрические характеристики, оказывают меньшее индуктивное влияние на электрические цени, расположенные вблизи. Тороидальные сердечники применяют в маломощных трансформаторах (рис. 165, а), чаще всего рассчитанных для работы на повышенных частотах. Их выполняют из стали специальных марок в виде пластин или лент толщиной от 0,2 до 0,08 мм. На рис. 165, б показана конструкция Ш-образного ленточного сердечника и расположение на нем обмоток.
Обмотки трансформатора обычно имеют цилиндрическую форму и выполняются из медного провода соответствующего сечения, что уменьшает активное сопротивление.
Для уменьшения потерь на рассеивание и лучшего отвода теплоты обмотки мощных трансформаторов выполняют в виде дисковых катушек, между которыми, оставляют вентиляционные каналы. При этом катушки высшего напряжения и катушки низшего напряжения чередуются между собой. Трансформаторы небольшой мощности называемые сухими, имеют естественное воздушное охлаждение.
Трансформаторы значительной мощности, как правило, имеют масляное охлаждение. У этих трансформаторов сердечник с обмотками помещается в стальной бак с трансформаторным маслом, которое   имеет высокие изоляционные свойства и хорошую теплопроводность. Слои масла от сердечника и обмоток перемещаются к стенкам бака и передают им тепло, которое рассеивается в воздух. Для увеличения поверхности охлаждения в мощных трансформаторах применяют трубчатые баки.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги