Главная >> Электроснабжение >> Электропитающие устройства и линии автоматики, телемеханики и связи

Однофазная мостовая схема выпрямления при работе на активную нагрузку - Электропитающие устройства и линии автоматики, телемеханики и связи

Оглавление
Электропитающие устройства и линии автоматики, телемеханики и связи
Классификация воздушных линий
Типовые профили опор ВЛ, ВСЯ СЦБ и ВЛС
Материалы и арматура воздушных линий
Арматура ВЛ, ВСЛ СЦБ и ВЛС
Опоры
Опоры высоковольтных и высоковольтно-сигнальных линий СЦБ
Опоры воздушных линий связи
Оборудование высоковольтных линий автоматики и телемеханики
Оборудование воздушных линий связи
Устройство удлиненных пролетов, пересечений и переходов
Заземления в устройствах автоматики, телемеханики и связи
Типы и конструкции заземляющих устройств
Строительство воздушных линий
Техобслуживание и ремонт ВЛ
Механизация работ при строительстве и ремонте ВЛ
Техника безопасности при работах на ВЛ
Назначение и классификация кабельных линий
Конструкция кабелей
Скрутка жил кабелей
Защитные оболочки и покровы кабелей
Кабели для устройств автоматики и телемеханики
Железнодорожные кабели связи
Оборудование, арматура КЛ автоматики и телемеханики
Оборудование, арматура КЛ связи
Строительство кабельных линий
Транспортировка и прокладка кабелей
Монтаж сигнально-блокировочных кабелей
Монтаж сигнально-блокировочных кабелей с полиэтиленовой оболочкой
Монтаж силовых кабелей
Монтаж контрольных кабелей
Паспортизация кабельных линий
Механизация кабельных работ
Техническое обслуживание и ремонт кабельных линий
Эксплуатация кабельных линий и сетей в зимних условиях
Техника безопасности при работах на кабельных линиях
Влияние электрических железных дорог и ЛЭП на ВЛ и КЛ связи и автоматики
Электрическое и гальваническое влияние электрических железных дорог
Мешающие влияния электрических железных дорог и ЛЭП
Нормы опасных и мешающих влияний железных дорог и ЛЭП
Средства защиты от опасных и мешающих влияний железных дорог на переменном токе
Средства защиты от опасных и мешающих влияний железных дорог на постоянном токе
Средства защиты от опасных и мешающих влияний ЛЭП
Защита полупроводниковых приборов от перенапряжений
Схемы защиты полупроводниковых приборов от перенапряжений
Воздействие и защита от молнии
Защита кабельных вставкок и линейных трансформаторов от атмосферных перенапряжений
Схемы защиты приборов автоблокировки от атмосферных перенапряжений
Защита устройств полуавтоматической блокировки от атмосферных перенапряжений
Защита кабелей от коррозии
Электрические методы защиты кабелей от коррозии
Защита кабелей от межкристаллитной коррозии
Принцип работы генератора постоянного тока
Реакция якоря генератора постоянного тока
Коммутация тока генератора постоянного тока
Типы генераторов постоянного тока
Принцип действия двигателя постоянного тока
Характеристики двигателей постоянного тока
Однофазный трансформатор
Трехфазный трансформатор
Автотрансформаторы и дроссели насыщения
Пусковые трансформаторы
Линейные и силовые трансформаторы
Путевые дроссель-трансформаторы
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Однофазный асинхронный двигатель
Синхронные генераторы
Первичные химические источники тока
Свинцовые аккумуляторы
Переносные свинцовые аккумуляторы и батареи
Электролит в свинцовых аккумуляторах
Химические процессы в свинцовых аккумуляторах
Электрические характеристики свинцовых аккумуляторов
Установка и монтаж стационарных свинцовых аккумуляторных батарей
Режимы работы свинцовых аккумуляторных батарей
Заряд, разряд, перезаряд свинцовых аккумуляторов
Правила эксплуатации свинцовых аккумуляторов
Способы устранения неисправностей свинцовых аккумуляторов
Щелочные никель-железные и никель-кадмиевые аккумуляторы
Аккумуляторные помещения с щелочные аккумуляторами
Электрические вентили и выпрямительные устройства
Классификация и параметры схем выпрямления переменного тока
Однофазная мостовая схема выпрямления при работе на активную нагрузку
Трехфазная мостовая схема выпрямления при работе на активную нагрузку
Влияние характера нагрузки на работу выпрямительных схем
Выпрямители, применяемые в устройствах автоматики и телемеханики
Электромагнитные и полупроводниковые преобразователи
Особенности электроснабжения устройств
Энергоснабжение устройств автоблокировки
Система питания переменным током
Смешанная система питания
Электропитание от высоковольтных проводов, подвешенных на опорах контактной сети
Электропитание устройств переездной сигнализации и полуавтоматической блокировки
Техническое обслуживание устройств электропитания на перегонах и станциях
Питающие пункты устройств автоматики и телемеханики
Приборы контроля и управления устройствами электропитания
Электропитание устройств автоматики и телемеханики крупных станций
Щитовая установка электропитания устройств централизации на крупных станциях
Щитовая установка электропитания устройств централизации - панель ПРББ
Щитовая установка электропитания устройств централизации - релейная панель горочной централизации
Щитовая установка электропитания устройств централизации - панели выпрямителей
Щитовая установка электропитания устройств централизации - панель конденсаторов ПК1
Электропитание устройств электрической централизации малых станций
Устройства электропитания электрической централизации промежуточных станций
Электропитающие установки безбатарейной и батарейной систем литания ЭЦ промежуточных станций
Автоматизированные дизель-генераторы и резервные электростанции

Однофазная мостовая схема при работе на активную нагрузку.
В данную схему включают четыре вентиля (рис. 228, а). К одной диагонали моста подключают переменное напряжение u2, а к другой диагонали — нагрузку г. За первый полупериод, когда точка а имеет положительный потенциал, а точка б — отрицательный, ток /„ проходит от точки а через вентиль VI, сопротивление нагрузки г и вентиль V3 к точке б.
Вентили V2 и V4 за этот полупериод находятся под обратным напряжением.. За второй полупериод, когда полярность точек а и б изменится, ток t0 проходит от точки б через вентиль V2, сопротивление нагрузки г и вентиль V4 к точке а. Вентили VI и V3 в это время находятся под обратным напряжением. Таким образом, за оба полу- периода напряжения иг ток через нагрузку г проходит в одном направлении.
Общая точка К катодов вентилей VI и V2 является для нагрузки положительным полюсом, а общая точка А анодов вентилей V2 и V4 — отрицательным.
Во вторичной обмотке трансформатора ток t2 (рис. 228, б) проходит оба полупериода и имеет синусоидальную форму. Ток не имеет постоянной составляющей и вынужденное намагничивание сердечника трансформатора отсутствует.
На рис. 228, в представлены кривые выпрямленного тока t0 и напряжения и0 = i0r.
В однофазной мостовой схеме выпрямленный ток 2 раза за один период достигает максимального значения, поэтому частота основной гармоники будет в 2 раза больше частоты напряжения сети, т. е. /ог = 100 Гц.


Рис. 228. Однофазная мостовая схема выпрямления (а) и диаграммы напряжений и токов в однофазной мостовой схеме выпрямления (б и в)
Основные параметры однофазной мостовой схемы для идеальных вентилей, работающих на активную нагрузку, приведены в табл. 14. В однофазной мостовой схеме по сравнению с однофазной двухполупериодной схемой с нулевым, выводом вследствие лучшего использования обмоток трансформатора уменьшаются размеры и масса трансформатора, не требуется специального вывода от средней точки вторичной обмотки, в 2 раза уменьшаются напряжение на зажимах вторичной обмотки и обратное напряжение на один вентиль.
К недостаткам однофазной мостовой схемы относятся: необходимость применения четырех вентилей; последовательное включение двух работающих вентилей (особенно высокоомных), приводящее к уменьшению выпрямленного напряжения с увеличением тока нагрузки; действующее значение тока вторичной обмотки в 2 раз больше действующего значения тока в схеме с нулевым выводом, что требует увеличения площади поперечного сечения провода вторичной обмотки на 20%.
В однофазной мостовой схеме применяют полупроводниковые вентили. Полупроводниковые выпрямители, собранные по однофазной мостовой схеме, используют в устройствах автоблокировки, электрической централизации и железнодорожной связи.
Трехфазная однополупериодная схема при работе на активную нагрузку  (рис. 229). В зависимости от напряжения сети первичную обмотку трансформатора Т (рис. 229, а) соединяют звездой или треугольником, а для получения нулевой точки вторичную обмотку всегда соединяют звездой.
Начала вторичных обмоток, а, Ъ и с соединяют с анодами вентилей VI, V2 и 113. Нагрузку г подключают между общей точкой К катодов вентилей и точкой О вторичной обмотки трансформатора Т.

Рис. 229. Трехфазная однополупериодная схема выпрямления (о) и диаграммы напряжений и токов в трехфазной однополупериодной схеме (б и в)

На рис. 229, б показаны кривые напряжений фаз uф1, uф2 и uфз, которые имеют одинаковую частоту и амплитуду, но сдвинуты по фазе на угол 120°.
За время tA—12 (т. е. в течение 1/3 периода) вентиль VI находится под наибольшим положительным напряжением. Это значит, что точка
а имеет положительный потенциал относительно точки О, поэтому ток проходит от точки а через вентиль VI и сопротивление г к точке 0. В промежутке времени — ta наибольшее положительное напряжение возникает на второй обмотке (фазе) трансформатора и ток проходит от точки b через вентиль V2 и сопротивление г к точке 0. В промежутке времени t3 — /4 ток будет проходить от точки с через вентиль V3 и сопротивление г к точке 0.
Таким образом, вентили VI, V2 и V3 работают поочередно, каждый в течение у периода, а их токи через нагрузку проходят всегда в одном направлении — от точки К к точке 0. Следовательно, точка К является положительным полюсом для нагрузки, а точка 0 — отрицательным. На рис. 229, в приведены кривые выпрямленного тока i„ и напряжения и0 = i0r, из которых видно, что по каждой вторичной обмотке ток проходит только в течение положительного полупериода. Постоянная составляющая этого тока вызывает вынужденное намагничивание сердечника и связанное с этим увеличение тока в первичных обмотках трансформатора. Так как напряжение на нагрузке достигает максимального значения 3 раза за один период, то частота основной гармоники в этой схеме в 3 раза больше частоты напряжения в сети, т. е. for = 150 Гц.
Основные параметры трехфазной однополупериодной схемы выпрямления при активной нагрузке приведены в табл. 14.
По сравнению с ранее рассмотренными схемами выпрямления однофазного переменного тока трехфазная однополупериодная схема имеет меньший коэффициент пульсации и более высокую частоту пульсации выпрямленного напряжения. В результате этого уменьшаются размеры и масса сглаживающего фильтра, обеспечивается лучшее использование обмоток трансформатора по сравнению с однофазной однополупериодной схемой и схемой со средней точкой, равномерно нагружается сеть трехфазного переменного тока.
К основным недостаткам трехфазной однополупериодной схемы относятся вынужденное намагничивание сердечника трансформатора и связанное с этим увеличение тока первичной обмотки.



 
« Электробезопасность   Электроснабжение автономного э. п. с. »
железные дороги