Содержание материала

Коррозия. Разрушение, вызываемое физическим или электрохимическим воздействием внешней среды, называют коррозией металлической оболочки и брони кабелей. В зависимости от характера этого воздействия различают почвенную (электрохимическую), межкристаллитную коррозию и электрокоррозию блуждающими токами.
Почвенная (электрохимическая) коррозия металлических покровов (оболочки и брони) кабелей происходит в результате воздействия на них органических и неорганических кислот, щелочей и солей, находящихся к почве.
Присутствующие к почве кислоты, щелочи и соли, растворенные в почвенной влаге, являются электролитом. При соприкосновении электролита с металлом (оболочкой или броней кабеля) на его поверхности образуется множество микроскопических гальванических элементов. Электродами в этих элементах являются зерна металла, разнородные по структуре, или металл и находящиеся в нем примеси. Токи, протекающие в этих гальванических элементах, и вызывают коррозию металла, аналогичную коррозии цинка в обычном гальваническом элементе. Такие гальванические элементы могут образоваться в результате контакта в электрической среде двух разнородных металлов, например алюминиевой оболочки и брони кабеля.
Причиной почвенной коррозии может явиться неоднородный состав почвы вдоль оболочки кабеля или различная по длине кабеля концентрация агрессивных веществ. В этом случае вдоль оболочки кабеля также создается некоторая разность потенциалов, вызывающая ток в оболочке и ее разрушение в месте выхода тока в почву.
Для свинцовой оболочки кабелей наиболее опасным является присутствие в почве уксусной кислоты, извести, нитратов (азотнокислых солей) и перегноя от органических веществ. Грунт с большим содержанием известняка (мергельный), а также насыпные грунты с содержанием в них каменноугольной смолы и доменных шлаков, представляющих собой сильные щелочи, также повреждают свинцовую оболочку кабелей. Для стальной брони кабелей наиболее опасными являются хлористые, серные и сернокислые соединения, находящиеся в почве. Для алюминиевой оболочки кабелей коррозионно опасной считается влажная почва любого состава.
Электрическая коррозия металлических покровов кабеля, возникающая под действием токов, блуждающих в земле, по сравнению с почвенной является более опасным видом коррозии. Рассмотрим причины возникновения блуждающих токов.
Электровозы и электросекции на ряде дорог питаются постоянным током, подаваемым от тяговых подстанций по контактной сети. Обратным проводом, по которому ток возвращается на тяговую подстанцию, являются рельсы. Вследствие того что рельсы представляют для тока сопротивление, большая часть возвращающегося на подстанцию тока ответвляется в землю и протекает по земле. Этот ток и называют блуждающим.
В случае если параллельно рельсам проложен подземный кабель, блуждающий ток будет стремиться пройти по металлической оболочке и броне кабеля. У места нахождения электровоза ток будет входить в оболочку и броню кабеля, а в районе тяговой подстанции — выходить из них. Те участки кабеля, на которых токи, блуждающие в земле, входят в оболочку и броню кабеля, называют катодными зонами, так как оболочка и броня кабеля на этих участках имеют отрицательный потенциал по отношению к окружающей среде. Участки кабеля, на которых блуждающие токи выходят из оболочки и брони кабеля в землю, называют анодными зонами, так как на этих участках оболочка и броня имеют положительный потенциал по отношению к земле. В месте выхода тока из оболочки и брони, т. е. к анодной зоне, будет происходить электролиз металла оболочки и стальной брони, вызывающий их коррозию. Постоянный ток 1 А, выходящий из оболочки и брони кабеля в землю, в течение года может разрушить около 35 кг свинца, 9 кг стали или 3 кг алюминия. Блуждающие токи, протекающие по оболочке кабеля, в особо неблагоприятных случаях могут достигать десятков ампер.
Кабель со свинцовой оболочкой, проложенный в земле, считается защищенным от коррозии в том случае, если во всех точках потенциал оболочки кабеля по отношению к земле отрицательный. Коррозия алюминиевых оболочек кабелей, вызываемая постоянным блуждающим током, может происходить на анодных и на катодных участках.
Блуждающие токи на участках дорог, электрифицированных по системе однофазного переменного тока, также протекают по оболочке и броне проложенных вблизи кабелей. Однако эти токи имеют переменный но знаку потенциал (по отношению к земле), изменяющийся с периодичностью 100 раз в секунду, и вследствие этого практически не оказывают коррозионного воздействия на свинцовую оболочку и стальную броню кабелей.
Алюминиевые оболочки кабелей могут корродировать под воздействием блуждающих переменных токов. Поэтому в конструкции кабелей с алюминиевой оболочкой предусмотрена ее защита в виде пластмассового шланга или нескольких слоев поливинилхлоридной ленты.

Эти покрытия надежно защищают алюминиевую оболочку от почвенной коррозии и коррозии блуждающим постоянным или переменным током. Эффективность покрытия имеет место только в том случае, если в стыках строительных длин проложенного кабеля его концы и соединительная или разветвительная муфта надежно изолированы от земли.
Межкристаллитная коррозия свинцовых оболочек кабеля возникает вследствие его длительной вибрации, вызываемой движущимся транспортом, если кабель проложен на железнодорожных или автодорожных мостах или вблизи от железнодорожных или трамвайных путей, и при длительной транспортировке кабеля, если барабаны с кабелем недостаточно амортизированы. Знакопеременные нагрузки в оболочке, возникающие при вибрации кабеля, приводят к усталости материала оболочки и ее растрескиванию, происходящему преимущественно по границам кристаллитов (зерен) свинца. В появившихся мелких трещинах образуется окись свинца, что ускоряет коррозию. Алюминиевые оболочки кабелей практически не подвержены межкристаллитной коррозии.
Зашита кабелей от почвенной коррозии. Чтобы предохранить кабель от почвенной коррозии, трассу кабелей следует выбирать так, чтобы она не проходила в грунтах с большим содержанием извести, в болотистых и топких местах. Необходимо обходить места скопления кислот и участки с насыпными грунтами, содержащими каменноугольные смолы и шлаки, места свалок мусора и промышленных отходов, а также района стока загрязненных промышленных вод. В тех случаях, когда не представляется возможным избежать прокладки кабеля в таких грунтах, для защиты металлических оболочек кабелей применяют кабели с пластмассовыми изолирующими покрытиями оболочки. Хорошую защиту от почвенной коррозии дает прокладка кабелей на участках с агрессивными грунтами в асбестоцементных трубах.
Для защиты кабелей от почвенной коррозии используют также электрические методы защиты (катодные установки, протекторы).
Защита кабелей от коррозии блуждающими токами. Одним из основных мероприятий по защите кабелей от коррозии блуждающими токами на дорогах, электрифицированных на постоянном токе, является ограничение токов утечки из рельсовых нитей в землю. Для этого повышают электрическую проводимость рельсовых нитей и переходное сопротивление между рельсами и землей Повышение электрической проводимости рельсовых нитей достигается установкой в месте стыков отдельных звеньев рельсов приварных рельсовых соединителей, которые делают из скрученных в жгут медных проволок общей площадью поперечного сечения не менее 70 мм2. При этом сопротивление стыка не должно превышать сопротивления сплошного рельса длиной 3 м
Увеличение переходного сопротивления между рельсами и землей достигают применением шпал, пропитанных креозотом или другими масляными антисептиками, не проводящими тока, щебеночного или гравийного балласта и отводом воды с поверхности пути.
Сопротивление изоляции рельсовых нитей, уложенных на железобетонных шпалах, должно быть не ниже, чем при деревянных шпалах. Для этого между подошвой рельса и железобетонной шпалой устанавливают резиновые прокладки, а болты, крепящие рельс к шпале, изолируют от шпалы изоляционными втулками и шайбами. На станциях и перегонах между подошвой рельса и балластом должен быть зазор не менее 30 мм.
Правилами техники безопасности предусмотрено электрическое соединение металлических и железобетонных опор контактной сети с ходовыми рельсами. Если сопротивление заземления этих опор меньше 20 Ом, то для уменьшения утечки токов из рельсов в землю опоры на перегонах и станциях присоединяют к рельсам не непосредственно, а через искровые промежутки (искровые разрядники). Кроме того, рельсовые нити изолируют от ферм мостов и железобетонной арматуры.
Другим мероприятием по защите кабелей от коррозии блуждающими токами является повышение переходного сопротивления между кабелем и окружающим его грунтом, а также между кабелем и рельсами электрической железной дороги или трамвая. Для этого кабели стараются по возможности прокладывать вдали от рельсов. В местах пересечения кабелей с рельсами устраивают кабельную канализацию из асбестоцементных труб. Наряду с применением дополнительных изолирующих покрытий аналогично защите от почвенной коррозии осуществляют прокладку кабелей в деревянных или железобетонных желобах.
При прокладке кабелей по металлическим или железобетонным мостам эти кабели тщательно изолируют, не допуская электрического соединения металлических оболочек кабеля или стальных труб, в которых он проложен, с металлическими деталями мостов.
Повышение переходного сопротивления между кабелем и рельсами достигается выполнением рекомендаций по прокладке и монтажу кабелей: об изоляции кабеля от корпусов релейных шкафов, изоляции от муфты светофорного стакана и металлического основания светофорной мачты и т. п.